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Application of artificial neural networks for prediction of retention factors
of triazine herbicides in reversed-phase liquid chromatography
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Abstract

In this paper a quantitative structure-retention relationship (QSRR) method is used to model reversed-phase high-performance liquid
chromatography (HPLC) behaviour of a series of triazine herbicides and their metabolites. Accurate description of the retention factors in
terms of four descriptors related to the analytes and to the mobile phase is achieved by means of an artificial neural network (ANN). For
comparison, a QSRR model is derived by multilinear regression (MLR). Validation of the two models shows a better ability in prediction of
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he ANN as compared with the MLR method. A solid-phase extraction (SPE) procedure allowing the simultaneous determination
riazinic compounds in groundwater analysis is also presented. The observed recoveries from water samples range between 85 a
g/ml concentration levels of all analytes.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Triazines, owing to their extensive use as herbicides in
odern agriculture, can be dispersed in surface and spring
ater at trace levels[1–3]. As a consequence of proven
arcinogenic and endocrine disrupting action of these and
ther potentially hazardous compounds resulting from
uman activity, monitoring of groundwater has become an

mportant aspect of environmental and health safeguard.
riazines are subjected to various abiotic and biotic degra-
ation processes[4], and consequently, quantification of the
etabolic products provides an additional analytical index

o check water contamination.
High-performance liquid chromatography (HPLC) based

n reversed stationary phase, coupled with a suitable
reliminary sample preparation step able to concentrate the
nalytes and remove possible interferences, is one of the
ost powerful techniques for detection and quantification of

∗ Corresponding author. Tel.: +390862433772; fax: +390862433753.
E-mail address:darchivi@univaq.it (F. Ruggieri).

triazine herbicides and their metabolites in water environm
[2,5,6].

In the framework of the progress of chromatograp
much effort has been concentrated in the last years to de
expert systems able to predict with good accuracy the r
tion behaviour of the analytes, providing an automatic m
for the optimisation of chromatographic performance. In
perspective, quantitative structure-retention relations
(QSRR) methods[7,8] have been proposed, with the ma
aim of finding a mathematical model relating to the re
tion of a given analyte to physicochemical and struct
parameters (descriptors). Besides practical applicatio
optimisation strategies, QSRR studies can significa
contribute to get some insight into the molecular mecha
of separation[9–11].

Statistical treatment of QSRR multivariate data, con
ing of a set of observed retention values and descriptors
number of test molecules, is generally based on multili
regression (MLR)[7,10–14]. In recent years, artificial neur
networks (ANN)[15,16] have become a very popular a
powerful chemometric tool to solve chemical proble
021-9673/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2005.04.038
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including optimisation of chromatographic analysis[17–23].
As compared with multivariate regression, ANN does not
require knowledge of a mathematical model before fitting of
the data. Thus, it is particularly useful in the case of hidden
nonlinearity inside the data variables.

In the present paper, ANN was used to develop a QSRR
model for the prediction of the retention factork of triazinic
herbicides. In addition to the effect of the molecular struc-
ture of the analytes on the retention behaviour, as expressed
by suitable descriptors, our attention was focused on the in-
fluence of pH and composition of the mobile phase, that are
some of the operative parameters optimised in HPLC in order
to achieve adequate separation and analysis time. The ability
in prediction of the best ANN model was compared with that
given by MLR.

A solid-phase extraction (SPE) procedure allowing simul-
taneous preconcentration of the five analytes in groundwater
samples was also proposed. As alternative to common sor-
bents, i.e. porous silica particles surface-bonded with C18 or
other hydrophobic groups, we used a macroporous copolymer
formed by [poly(divinylbenzene-co-N-vinylpyrrolidone)],
exhibiting both hydrophilic and lipophilic retention charac-
teristics.
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were considered in a preliminary step. However, information
carried by these descriptors appeared to largely overlap with
that provided by logKow andµ, as indicated by absolute val-
ues of coefficients of mutual correlation of these parameters
with logKow (between 0.86 and 0.97) andµ (between 0.75
and 0.85). The influence of the above molecular properties
on the retention behaviour was also evaluated by applying
MLR based on a stepwise procedure, in which the number
of descriptors to be selected and the order of entry are based
on statistical criteria (see below). The regression model with
the best statistics was that including only logKow andµ as
analyte descriptors. These were finally chosen as the optimal
parameters to describe the molecular properties.

2.2. Artificial neural networks analysis

Details on principles, functioning and applications of ar-
tificial neural networks can be found in references[15] and
[16].

ANNs are computational models designed to simulate the
way in which the human brain processes information. They
consist of simple processing units (or neurons) linked with
weighted modifiable interconnections. The neurons are gen-
erally organised into a layered structure, formed by one input
layer, one output layer and at least one hidden layer. In a
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.1. Involved parameters

The triazinic herbicides used as test analytes in the pr
tudy are summarised inFig. 1. The QSRR model was built b
sing descriptors related to the analyte and descriptors re

o the eluent as inputs. The analyte descriptors were: the
rithm of then-octanol–water partition coefficient (logKow,

aken from literature[2,24]), which is the standard hydroph
icity index widely used in QSRR research, and the
ipole moment (µ), related to the charge distribution with

he molecule, obtained by ab-initio calculations. The des
ors related to the eluent were the eluent composition
ressed by the percentage of methanol (%MeOH) and

n addition to logKow andµ, some other physico-chemic
roperties calculated from the molecular structure (mol

ar weight, refractive index, molar volume and polarisabili

Fig. 1. Structure of the tr
eed-forward network the signals are propagated from th
ut layer through the hidden layer(s) to the output layer.

eed-forward ANN architecture adopted in the present s
onsists of four inputs (the descriptors defined above)
ne output (k values) connected to each other by one hid

ayer with six neurons.
In addition to the network topology, an important com

ent of most neural networks is a learning rule. A learn
ule allows the network to adjust its connection weight
rder to associate given inputs with corresponding out
he training of the network has been carried out by u
back-propagation algorithm, in which the network re

nputs and outputs from a proper data set (training set
teratively computes weights and biases in order to minim
he sum of squared differences between predicted and
alues. The training is stopped when the error in predic
eaches a desired level of accuracy. However, if the net
s left to train too long, it will overtrain and lose the abil

herbicides used in this work.
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to generalise. In order to avoid over-training, the predictive
performance of the trained ANN is checked by running the
back-propagation algorithm on a data set not used in training
(validation set).

The training set and validation set used in the present work
are reported inTables 1 and 2, respectively. The whole data
set consists of logKow and µ values of four triazine her-
bicides (atrazine, desisopropylatrazine, desethylatrazine and

prometon), pH and mobile phase composition and observed
k values (the target of the model). The total number of data
points is 58, 14 of them (about 24%) being used for valida-
tion. The data were distributed over training and validation
sets in order to have for each set a quite uniform distribution
of variables over the related range of variability. Before fitting
the data, input and output variables were normalised to have
0 mean and unity standard deviation (SD). At the start of a

Table 1
Data set used in training of ANN and derivation of MLR model

Analyte %MeOH pH logKow µ (D) Observedk Predictedk

ANN MLR

Desisopropylatrazine 60 3.0

1.2 3.70

0.590 0.573 0.584
50 3.0 0.983 0.963 1.128
40 3.0 1.766 1.767 2.180
70 3.4 0.365 0.364 0.302
50 3.4 1.014 0.952 1.128
40 3.4 1.778 1.790 2.180
70 3.8 0.374 0.379 0.302
60 3.8 0.641 0.562 0.584
50 3.8 0.840 0.916 1.128
70 4.2 0.439 0.403 0.302
60 4.2 0.525 0.563 0.584
40 4.2 1.641 1.562 2.180

Atrazine 70 3.0 1.716 1.587 2.031

P

D

P
t

2.7

60 3.0
50 3.0
70 3.4
60 3.4
40 3.4
60 3.8
50 3.8
40 3.8
70 4.2
50 4.2

40 4.2

rometon 70 3.2

2.55

65 3.4
65 3.8
70 4.0
65 4.0
55 4.0
45 4.2

esethylatrazine 70 3.0

1.6

60 3.0
40 3.0
70 3.4
50 3.4
40 3.4
70 3.8
60 3.8
50 3.8
40 3.8
70 4.2
60 4.2
50 4.2

redictedk values from ANN and MLR models. Related correlation coefficientR)
ext for details).
3.43

3.268 3.218 3.924
7.473 7.427 7.580
1.498 1.572 2.031
3.041 3.163 3.924

20.924 20.109 14.645
3.637 3.225 3.924
6.855 7.302 7.580

19.850 19.663 14.645
1.863 1.801 2.031
7.442 7.265 7.580
18.902 18.867 14.645

2.50

1.650 1.672 2.158
2.643 2.535 3.000
2.977 2.719 3.000
1.743 1.970 2.158
3.232 2.838 3.000
6.492 6.736 5.795

19.382 19.083 11.196

3.82

0.596 0.570 0.478
0.946 0.966 0.923
3.472 3.507 3.444
0.530 0.560 0.478
1.789 1.723 1.783
3.543 3.526 3.444
0.558 0.579 0.478
1.041 0.928 0.923
1.498 1.650 1.783
3.471 3.340 3.444
0.651 0.612 0.478
0.833 0.928 0.923
1.670 1.567 1.783

ERR% 4.9 15.8
R 0.999 0.977

s (and average percent error (ERR%) are given at the bottom of the table (see
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Table 2
Data set used in validation of ANN and MLR models

Analyte %MeOH pH logKow µ (D) Observedk Predictedk

ANN MLR

Desisopropylatrazine 70 3.0

1.2 3.70

0.404 0.365 0.302
60 3.4 0.556 0.564 0.584
50 4.2 0.948 0.872 1.128
40 3.8 1.762 1.701 2.180

Atrazine 40 3.0

2.7 3.43

20.667 19.767 14.645
50 3.4 7.772 7.363 7.580
70 3.8 1.568 1.658 2.031
60 4.2 2.904 3.349 3.924

Prometon 60 3.2
2.55 2.50

3.495 3.856 4.169
55 3.8 6.147 6.584 5.795
70 4.2 1.953 2.078 2.158

Desethylatrazine 50 3.0
1.6 3.82

1.744 1.761 1.783
60 3.4 0.891 0.939 0.923
40 4.2 3.293 3.064 3.444

ERR% 6.5 15.7
R 0.999 0.984

Predictedk values from ANN and MLR models. Related correlation coefficients (R) and average percent error (ERR%) are given at the bottom of the table (see
text for details).

training run, the biases and weights were initialised at random
values in the range between +1 and−1. At the end of each
training cycle, the learned network was tested on the valida-
tion set. Typically, the training error decreases, whereas the
validation error first decreases and subsequently begins to rise
again, revealing that overtraining of the network is occurring.
In addition to the network architecture, the performance of
ANN can also depend on two important parameters, the learn-
ing rate and the momentum, that control the size and the speed
of weight changes made by the back-propagation algorithm,
respectively. The values of these parameters and the number
of neurons in the hidden layer were tested to find the best
performance of the network. The optimal architecture (six
hidden neurons), training cycle number (3000), learning rate
(0.15) and momentum (0.30) were defined as those providing
the lowest validation error. The transfer functionξ(Netk) used
in all layers is the hyperbolic tangent function defined as:

ξ(Netk) = 1 − e−αNetk

1 + e−αNetk

where the parameterα (the slope of the transfer function) is
fixed to 1, that has provided a lower validation error than the
more common sigmoid transform function.

2.3. Multilinear regression

ua-
t are
d

l

w ts
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MLR procedure[25] is applied. The optimal number of de-
scriptors and the best regression equation are defined on the
basis of the following statistical parameters: multiple corre-
lation coefficient,F ratio, standard error (SE) of the estimate
and statistical significance of individual descriptors.

3. Experimental

3.1. Solvents and chemicals

All used pesticides are certified materials and were
provided by Labor Dr. Ehrenstorfer-Schäfers (Augsburg,
Germany). Acetonitrile, dichloromethane and methanol
were HPLC grade and provided by Carlo Erba Reagenti
(Milan, Italy). The mobile phase was prepared with distilled
water obtained from a milli-Q water filtration/purification
system (Millipore, Bedford, MA, USA). Stock solutions
were prepared by dissolving 10 mg of respective triazines
in 10 ml of methanol. The stock solutions (1000 mg/l)
were used to prepare the standard methanol solutions with
concentration 0.2, 0.4, 0.6, 0.8, 1.0, mg/l, respectively. All
solutions were stored at 4◦C.

3.2. Sampling and sample preparation

Spring water samples were collected in the
a ila,
I
t aper
W
I ate
t was
s s in
t

MLR is a common method used in QSRR study. Eq
ions relating the retention behaviour to the descriptors
eveloped with the following form:

og k = a0 +
∑

aiXi

herea0 is the intercept andai are the regression coefficien
f the descriptorsXi . In the present work a forward stepw
gricultural–industrial settlement of Fucino plain, (L’Aqu
taly) by a 1 l glass dark bottle and stored at 4◦C. Prior
o analysis the water samples were filtered by filter p

hatman 5, diameter 5 cm, pore size 0.45�m (Whatman
nternational Ltd. Maidstone, England). In order to evalu
he recovery of the extraction procedure, 1 l of sample
piked with an equimolar mixture of triazine compound
he concentration range 0.2–1.0�g/l.
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3.3. Solid phase extraction

Sample preconcentration was carried out by using OASIS
HLB 6cc 200 mg cartridges, constituted by a copolymer of
N-vinylpyrrolidone and divinylbenzene (Waters, Milford,
MA, USA). The cartridges were cleaned with 10 ml of
dichloromethane, and conditioned with 10 ml of methanol
and successively with 10 ml of milli-Q water, forced through
the cartridge by means of a positive pressure. The sample
(1 l) was drawn through the cartridge at a flow of 10 ml/min
by applying a moderate vacuum, after connecting the sample
flask directly to the cartridge. The cartridge was then washed
with a mixture water/methanol (95:5, v:v) and successively
dried for 5 min by fluxing air. The adsorbed compounds were
eluted by 5 ml of acetonitrile and successively by 5 ml of
methanol. The collected eluate was evaporated to dryness in
a Supelco drying attachment working under vacuum in nitro-
gen atmosphere. The sample was successively reconstituted
by 500�l of the same mobile phase used in HPLC analysis.
Aliquots (20�l) were used in chromatographic analysis.

3.4. Equipment

Separation was performed using an HPLC system
equipped with a column Spherisorb ODS2 (5�m,
250 mm× 4.6 mm, Waters), a precolumn LC 8 (Supelco), a
5 ers).
T llen-
n was
m ter
e

3
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Table 3
Recoveries (%) of the SPE procedure and, in parentheses, related SDs from
three replicate experiments for different spiked levels of the analytes in
groundwater

Analyte Spiked level (�g/l)

0.1 0.2 0.3 0.4 0.5

Desisopropylatrazine 85 (4) 87 (4) 95 (5) 97 (5) 95 (5)
Desethylatrazine 87 (4) 91 (4) 92 (5) 90 (5) 93 (2)
Simazine 89 (5) 92 (2) 88 (4) 94 (3) 95 (4)
Atrazine 91 (2) 93 (2) 93 (2) 98 (2) 101 (3)
Prometon 86 (3) 89 (2) 102 (2) 98 (1) 98 (1)

500�l. As a consequence, the detection limit of analysed
triazines was as low as 0.010�g/l for desisopropyilatrazine
and desethylatrazine, 0.006�g/l for simazine and atrazine
and 0.018�g/l for prometon. The repeatability of extraction
procedure was tested for the different concentration levels
used in the calibration curve of each analyte. The observed
recoveries with related SDs are reported inTable 3. The ex-
traction procedure allowed the simultaneous quantification of
the five herbicides. No noticeable differences between results
of simultaneous and individual analyses were detected.

4.2. ANN analysis

A standard procedure in back-propagation ANN analysis
is the training and validation of the network by using a set
of data (consisting of input variables and target output(s)),
that, by means of iterative minimisation of the prediction
error, allows to optimise the adjustable parameters of the net-
work (the weights and the biases). A comparison between
computed and observedk values in training and validation is
given inTables 1 and 2, respectively.

Generalisation ability of the trained ANN was further
checked on a third data set (test set). In contrast to the valida-
tion set, which is based on the same four triazine herbicides
used in the network training, the test procedure evaluates the
capability of the network to predict the retention behaviour
o zine,
i test
s r
w

4

by
s ain-
i p
i rre-
l te
( d to
b . As
a from
M om-
p egli-
g led
15 pump and a 996 Photodiode Array Detector (Wat
he chromatographic apparatus was controlled by a Mi
ium software (Waters). The pH of the mobile phase
easured by an Orion 420 A (Beverly, MA, USA) pH-me
quipped with an Orion 9107 electrode.

.5. Determination of retention parameters for QSSR
tudies

The HPLC analyses were carried out at room tem
ture with a flow-rate of 1 ml/min at isocratic conditio
he absorbance of the analytes was measured in the sp
ange 210–400 nm. The chromatographic peaks were
tored at 225 nm. pH of the aqueous phase, before m
ith methanol, was adjusted by addition of NaOH to parti
eutralise H3PO4 (1%) previously added, and measured b
H-meter. The retention behaviour of the analytes was in

igated by varying the methanol content of the mobile ph
etween 35 and 70% and its pH between 3.0 and 4.8.
ange of chromatographic conditions was able to guara
ood resolution and acceptable retention time of all anal
roviding an accurate evaluation of the retention factok,

aken as the target property of the QSRR model.

. Results and discussion

.1. SPE–HPLC analysis

The proposed sample preparation procedure allow
reconcentration of the analytes by a factor of 2000
f groundwater being concentrated to a final volume
f a new (unseen) analyte (the triazine herbicide sima
n this case), not included in training and validation. The
et consisting of 11 data points is given inTable 4togethe
ith the network response.

.3. Multilinear regression

As an alternative to ANN, a QSRR model was derived
tepwise MLR applied to the variable set used in the tr
ng of the neural network (Table 1). Although a relationshi
ncluding all four descriptors provided the maximum co
ation coefficient (R) and the minimum SE of the estima
s), the regression coefficient of the descriptor pH resulte
e statistically not significant on 99% confidence level
consequence, we decided to exclude this parameter
LR analysis. The resulting three-descriptor model, as c
ared with the four-descriptor one, exhibited an almost n
ible deterioration of statistical quality of fitting, as revea
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Table 4
Test set and neural network response compared with prediction of the MLR model

Analyte %MeOH pH logKow µ (D) Observedk Predictedk

ANN MLR

Simazine 65 3.4 2.3 3.76 1.481 1.449 1.587
45 3.7 6.341 6.216 5.925
60 3.7 1.982 1.998 2.206
50 4.0 4.390 4.002 4.262
55 4.2 2.707 2.773 3.067
65 4.2 1.390 1.530 1.587
55 3.2 2.855 2.900 3.067
70 3.7 1.047 1.098 1.142
60 4.0 1.895 2.012 2.206
40 3.7 11.498 10.897 8.235
35 4.0 14.979 15.577 11.446

ERR% 4.4 12.8
R 0.998 0.993

Related correlation coefficients (R) and average percent error (ERR%) are given at the bottom of the table (see text for details).

by comparable R and s figures in fitting and slightly better
prediction ability in validation. The final relationship is the
following:

logk = 1.267(±0.207)+ 0.531(±0.028) logKow

− 0.0286(±0.0010)%MeOH− 0.114(±0.041)µ

with n= 44;R= 0.983;s= 0.091;F= 383.77;p< 10−4; where
numbers in parentheses are SDs of regression coefficients,n
is the number of data point used in deriving the regression
equation,F is the valueF-test of significance andp is the sig-
nificance level of the equation. LargeRandF values indicate
adequate fit. Comparison of standardised model coefficients
(not shown) reveals that the effect of %MeOH and logKow on
the retention behaviour is comparable and predominant with
respect to that of the other descriptors. Calculatedk values
on the basis of the above relationship are reported inTable 1
and compared with the experimental values. The prediction
ability of the QSRR model derived by MLR was separately
checked on the validation and test sets previously used in
ANN analysis. The predictedk values compared with exper-
imental ones are reported inTables 2 and 4, respectively.

4.4. Comparison of ANN and MLR models

is
g y
m xper-
i of
t reas
F el
w hese
p lues
w or-
r rved
a ent
e ables

and defined as:

ERR%= 1

n

n∑
i=1

abs

(
ti − yi

ti

)
× 100

wheren is the number of data in a given set,ti andyi are the
measured and predictedk values, respectively. The QSRR
model developed via ANN exhibits a very good ability in
describing the retention behaviour of the selected triazine
herbicides both in training and prediction, as witnessed by
the high correlation coefficients (R= 0.997 or greater) and
the relatively low ERR% (4.9, 6.5 and 4.3, for training, val-
idation and test, respectively). On the other hand, the MLR
model, although it provided a quite satisfactory correlation
both in fitting and prediction, was less accurate than the ANN
model. This is proved by the significantly lowerRvalues for

F es
f

A graphical comparison of ANN and MLR analyses
iven inFigs. 2 and 3, where the logk values calculated b
eans of the respective models are plotted against the e

mental values. In particular,Fig. 2 depicts the response
he two models in the training (or fitting) procedure, whe
ig. 3 shows the predictive ability of MLR or ANN mod
hen applied to the validation and test set. Inspection of t
lots clearly reveals that the prediction of retention va
ith neural network is superior to MLR. In addition to the c

elation coefficient, the overall agreement between obse
nd predictedk values is quantified by the average perc
rror (ERR%) reported, for each data set, in the related t
ig. 2. Comparison of the experimental logkvalues with the calculated on
rom the ANN and MLR models for the training set.
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Fig. 3. Comparison of the experimental logk values with the predicted ones
from the ANN and MLR models for the validation and test sets.

the training and validation set (0.977 and 0.984, respectively).
AlthoughRvalues are comparable in the case of the test set,
ERR% given by MLR for all three data set is always sensi-
tively higher (15.8, 15.7 and 9.8, respectively) than prediction
errors given by the ANN model.

5. Conclusions

In the present study, a set of four descriptors, including
both mobile phase and analytes properties, is adopted to build
a QSRR model able to describe the retention behaviour of
some triazine herbicides in the framework of environmental
monitoring by means of reversed-phase HPLC. Our attention
has been focused on the effect of mobile phase composition
(% of organic modifier of the aqueous phase) and pH, i.e. the
experimental parameters most commonly used to optimise
the resolution and the analysis time. In addition to these op-
erative parameters, only two descriptors, logKow and total
dipole moment, are sufficient to account for the effect of the
molecular structure of the analyte. In this context, a 4-6-1
feed-forward neural network provides a very accurate QSRR
model as proven by the correlation between predicted and
observed retention factors better than 0.997 and a relatively
low ERR% in prediction (4.9 and 6.5% in training and valida-
tion, respectively). For comparison, a MLR model based on
t , but
n tence
o iour
a bility

of the QSRR model is confirmed by its ability in predicting
the retention behaviour of simazine, i.e. a solute not included
in the set of test molecules used in training and validation
of both MLR and ANN. Again, although MLR and ANN
provide comparableR values, ANN gives a lower ERR% in
prediction (4.4% versus 12.8%). Moreover, a simple method
for the simultaneous quantification of the five triazine herbi-
cides in groundwater samples was presented. This procedure
guarantees high recoveries and good extraction repeatability.
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